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Linear friction welding (LFW) is a solid-state joining process that is an established technol-
ogy for the fabrication of titanium alloy bladed disks (blisks) in aero-engines. Owing to the
economic benefits, LFW has been identified as a technology capable of manufacturing Ti-
6Al-4V aircraft structural components. However, LFW of Ti-6Al-4V has seen limited indus-
trial implementation outside of blisk manufacture, which is partly due to the knowledge
and benefits of the process being widely unknown. This article provides a review of the
published works up-to-date on the subject to identify the ‘‘state-of-the-art”. First, the back-
ground, fundamentals, advantages and industrial applications of the process are described.
This is followed by a description of the microstructure, mechanical properties, flash mor-
phology, interface contaminant removal, residual stresses and energy usage of Ti-6Al-4V
linear friction welds. A brief discussion on the machine tooling effects is also included.
Next, the work on analytical and numerical modelling is discussed. Finally, the conclusions
of the review are presented, which include practical implications for the manufacturing
sector and recommendations for further research and development. The purpose of this
article is to inform industry and academia of the benefits of LFW so that the process
may be better exploited.
� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Linear friction welding (LFW) is a solid-state joining process that works by oscillating one workpiece relative to another
while under a large, compressive force; see Fig. 1(a). The friction between the oscillating surfaces produces heat which
causes the interface material to plasticise. The plasticised material is then expelled from the interface causing the workpieces
to shorten (burn-off) in the direction of the compressive force [1–4]. During the burn-off the interface contaminants, such as
oxides and foreign particles, which can affect the properties [5,6] and possibly the service life of a weld [7], are expelled from
(a) LFW process schematic and (b) a completed Ti-6Al-4V weldment showing the expelled interface material (flash), where the oscillatory
occurred in the ‘x’ direction [16].



Fig. 2. (a) An aerospace component machined from an oversized block of metal (image courtesy of TWI [25]), and (b) A Ti-6Al-4V preform fabricated using
the LFW process - the as-welded structure can be seen on the left side of the figure and the final machined component on the right (image courtesy of TWI
[1]).
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the weld into the flash [8]. Once free from contaminants, pure metal to metal contact occurs resulting in an integral bond
[8–16]. Fig. 1(b) shows an example of a completed weld.

LFW is an established technology for the manufacture of titanium alloy integrated bladed disks (blisks) for aero-engines
[2,8,17–19]. However, owing to the many benefits of the process, it is finding increasing interest for the manufacture of air-
craft structural components – particularly for Ti-6Al-4V. This is primarily owing to titanium and its alloys being extremely
expensive in terms of purchase cost (>£70 kg�1), energy consumption (>500 MJ�kg�1) and CO2 emissions (>40 kg�kg�1) [20].
Typically, Ti-6Al-4V aircraft structural components are machined from oversized ingots, forgings and extrusions [21]. This is
an expensive process due to the proportionally large amount of material that is purchased compared to the amount that
remains after machining [22,23]; see Fig. 2(a). The buy-to-fly (BTF) ratios of components manufactured using this approach
can be as poor as 20:1 and are rarely as low as 5:1 [21,23]. LFW reduces the material required to make a component by
joining smaller workpieces to produce a preform, which is subsequently machined to the desired dimensions, as shown
in Fig. 2(b). This brings substantial improvements to the BTF ratios, which significantly reduces manufacturing costs
[1,2,8,24]. For example, BTF ratios as low as 2:1 and 1.6:1 have been quoted for components machined from linear friction
welded Ti-6Al-4V preforms [21,25]. The linear friction welded components also have a comparable strength and quality to
machined parts [26]. Preliminary investigations suggest that up to 50% of all titanium alloy aerospace structures can be
manufactured using the LFW process [21].

Despite the interest, LFW of Ti-6Al-4V has experienced limited industrial implementation outside of blisk manufacture.
This is partly due to the knowledge and benefits of the process being widely unknown. A significant amount of academic and
industrial research has been conducted in recent years [27]. The purpose of this article is to provide an up-to-date review of
the published works on the linear friction welding of Ti-6Al-4V so that the current ‘‘state-of-the-art” may be identified and
the process better exploited. The order of the review is as follows: First, the LFW process background, fundamentals, advan-
tages and industrial applications are discussed. Second, the microstructure, mechanical properties, flash morphology, inter-
face contaminant removal, residual stresses and energy usage of Ti-6Al-4V linear friction welds are presented, a brief
discussion on the machine tooling effects is also included. Next, the work on process modelling is discussed. Finally, the con-
clusions of the review are presented, which include practical implications of the article findings for the manufacturing sector
and recommendations for further research.



Fig. 3. (a) asperity interaction (Phase 1), (b) viscous material formation (Phase 2), and (c) steady-state condition showing the expelled interface
material (Phase 3) [14,15].
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2. Background and process fundamentals

2.1. Background

The linear friction welding process was first patented in the late 1920s [8], however there was very little detail recorded
on its use. A discussion of the process was then recorded in the USSR in the 1960s [28], but it was described as being ‘‘very
doubtful” as a manufacturing technique [8,28] due to the difficulty in generating reciprocating linear motion [28]. The first
real structured industry research into the process took place at TWI, UK in the 1980s [2], while the first recorded academic
research took place at Ohio State University, USA [9,29] and the University of Bristol, UK [3,30–33]. When compared to other
friction welding processes, where there are numerous published works, there has been relatively little information available
on LFW until recently [1,3,10].

2.2. Process phases

As previously stated, linear friction welding (LFW) is a solid-state joining process that works by oscillating one workpiece
relative to another while under a large, compressive force, as shown in Fig. 1(a). Despite being one continuous process, LFW
is said to occur over four phases [3,31]:

� Phase 1 – Initial phase. Microscopic contact exists between asperities on the two surfaces to be joined and heat is gen-
erated due to friction; see Fig. 3(a). The asperities soften and deform, increasing the true area of contact between the
workpieces. Negligible axial shortening (burn-off) in the direction of the applied force is observed during this phase.

� Phase 2 – Transition phase. The heat due to friction causes the interface material to plasticise and become highly viscous,
as shown in Fig. 3(b). This causes the true area of contact between the workpieces to increase to 100 percent of the cross-
sectional area. Heat conducts away from the interface, softening more material, and burn-off begins to occur due to the
expulsion of the viscous material from the interface. For the Ti-6Al-4V alloy, this phase begins when the interface reaches
the b-transus temperature [15].

� Phase 3 – Equilibrium phase. A quasi-steady-state condition is achieved and the axial shortening (burn-off) occurs at a
nearly constant rate through the rapid expulsion of the viscous interface material, forming the flash; see Fig. 3(c)

� Phase 4 – Deceleration and forging phase. The relative motion is ceased and the workpieces are aligned. In some appli-
cations an additional increased forging force may be applied to help consolidate the weld.

2.3. Process parameters

There are eight process parameters used during linear friction welding [1–3,6–8,16,34–45]:

� Oscillation frequency
� Oscillation amplitude
� Applied force/Normal force
� Burn-off/Axial shortening/Upset
� Ramp-up time (time taken for the amplitude and frequency to reach a steady-state level)
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� Oscillation decay time (time taken to decay the amplitude and frequency to a stop)
� Forging force (the force used to help consolidate the weld post-oscillatory motion)
� Forging force time (the time the forging force is applied)

Many authors appear to consider the frequency, amplitude, applied force and burn-off to be the process inputs of primary
importance [2,3,6,46–50]. Although the frequency and amplitude of oscillation are two separate process inputs it has been
shown in several cases that they may be considered as a single input – an average rubbing velocity – as varying either
while keeping the average rubbing velocity constant has relatively little effect on the results for Ti-6Al-4V linear friction
welds [14–16]. The average rubbing velocity ðv r) is defined as [1]:
v r ¼ 4 � Amplitude � frequency ð1Þ
2.4. Process advantages and limitations

Linear friction welding offers many advantages over competing manufacturing processes, for example:

� The weld remains in the solid-state, avoiding many of the defects associated with melting and solidification during fusion
welding [11,42,51–56], such as pores and solidification cracks. The distortion of the welded component is also reduced
[10,40,57–60]

� The process has lower peak temperatures than fusion welding, reducing intermetallic formation and allowing for a range
of dissimilar materials to be joined [43,45,61–64]

� The process does not need a filler metal, flux and shielding gas [10]
� The process is easily automated, making the process highly repeatable and not dependant on human influence [1,2,49],
resulting in very low defect rates [15]

� When used to fabricate preforms the material usage and manufacturing costs are reduced when compared to subtractive
techniques (e.g. CNC machining) [1,2,8]

The process does however have some limitations, for example:

� The cost and size of the machines
� The maximum weld size is limited by the size of the machine and is typically limited to several hundred millimetres
square

3. Industrial usage of LFW

3.1. Bladed disk (Blisk) manufacturing

In general, the LFW process is considered to be an ‘‘exotic” technology for the manufacture of high-value aerospace com-
ponents [1,2]. This is primarily due to the expensive cost of the first generation equipment and the fact that most industrial
LFW machines are owned by aerospace manufacturers [2].

To date, the process is commercially established as a technology for the fabrication of titanium alloy integrated bladed
disks (blisks) in aero-engines [2,8,17–19,27,65]. Titanium blisks are used in low temperature sections of aero-engines. Typ-
ically, Ti-6Al-4V (Ti-64) is used for applications up to 300 �C and Ti-6Al-2Sn-4Zr-2Mo-0.15Si (Ti-6242) for applications up to
480 �C [4,66]. Rolls Royce, MTU Aero Engines, General Electric and Pratt & Whitney all use the LFW process to commercially
produce titanium alloy blisks [4,67,68]. Fig. 4(a) shows an example of a blisk manufactured using the LFW process.

LFW offers many advantages when manufacturing blisks, for example conventionally manufactured bladed disk assem-
blies are reliant on mechanical fixings and dovetail joints to join the blade to the disk, as shown in Fig. 4(b). LFW allows for
the blade to be integrally joined to the disk which significantly reduces the weight of the component [4,47,69], even by as
much as 30% [4,47]; see Fig. 4(c). In addition to the weight savings, the lack of a mechanical interface between the blades and
the disks eliminates common sources for fatigue crack initiation [4,66], which is often the life limiting feature of these parts
[4]. This can result in extended inspection intervals [66]. Furthermore, linear friction welded blisks also have improved per-
formance (e.g. better aerodynamics), which reduces the operating costs for the end user [7,18,35,44,58,70].

Another alternative to using mechanical fixings is to machine the blisk from a solid block [4,71,72]. When compared to
the LFW process this is a costly exercise due to the amount of waste material generated – particularly for larger blisks [7,66].
Blisks machined from a solid block must comprise of a single material [4,71]. Linear friction welding has the advantage of
joining disks and blades of different materials [4,71].

3.2. Future concepts

As discussed in the Section 1, in addition to blisk manufacture, there is an industrial interest to use LFW to produce a wide
range of structural aerospace preforms [13,50], such as those shown in Fig. 2(b) and Fig. 5. This is primarily due to the



Fig. 4. (a) an integrated bladed disk (blisk) manufactured at TWI (image courtesy of TWI), (b) a conventional bladed disk assembly [7] and (c) a linear
friction welded blisk [7].

Fig. 5. Demonstration of an aerospace structural component being machined from a linear friction welded Ti-6Al-4V preform (Image courtesy of TWI and
the TiFab Consortium [21]).
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significant cost savings that can be achieved. For example, when compared to machining from block, material cost savings of
up to 90% can be obtained [1,25,27] and the estimated total manufacturing cost of a component can be reduced by 23–80%
[21,73,74].

In addition to joining workpieces with a single surface of contact, as shown for the components in Figs. 1(b), 2(b) and 5,
there is an industrial need to join non-planar surfaces to better enable the manufacture of complex structural preforms
[27,50,75,76]; see Fig. 6(a) and (b). For example, The Boeing Company is interested in the joining of a ‘‘keystone” workpiece
to two flanges and a base plate [75], as shown in Fig. 6(c). The flanges are welded to the base plate first (stage 1 weld) and the
generated flash removed and the surfaces re-cleaned. The stage 1 welds are straight forward as only one surface is required
to be joined to the base plate. However, production of the ‘‘bridging weld” (stage 2 weld) where the keystone workpiece is
joined to the assembly might be problematic as there are multiple surfaces that need to be welded concurrently.
3.3. LFW machine manufacturers

As far as the authors can tell, there are five major LFW machine manufacturers: ACB (France), APCI (Indiana, USA), KUKA
Systems (Germany), MTI (Indiana, USA) and Thompson Friction Welding (UK). On a basic level LFW machines work by
oscillating one workpiece relative to another while under a large, compressive force. According to Bhamji [65], the force



Fig. 6. Linear friction welding of non-planar surfaces, showing: (a) an illustration of a preform, (b) an illustration of the component machined from (a), and
(c) the manufacturing process of the ‘‘keystone” weld where the oscillations occur in and out of the viewing plane.
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application is always generated by a hydraulic ram, while the oscillatory motion can be generated mechanically or
hydraulically, as shown in Fig. 7(a) and (b), respectively.

Mechanically operated systems often use a motor to rotate a crankshaft. Attached to the crankshaft are two cranks that
can be phase shifted. A whipple beam is attached to the cranks. When the cranks are 180� out of phase the beam rotates
around its centre point causing the centre to remain stationary, which effectively gives an oscillation amplitude of zero.
To achieve oscillation amplitudes between zero and the maximum, the phase shift is altered between 0� and 180� [2,65].
The frequency is dependent on the revolutions per minute of the motor [2]. The tooling that holds the workpieces is attached
to the centre of the whipple beam. Hydraulic operating systems work by pumping high pressure fluid into a stack of accu-
mulators (tanks). A servo valve then allows the high pressure fluid from the accumulators to be alternated between each end
of a cylinder. This oscillates a piston at a desired amplitude and frequency. The tooling that holds the workpiece to be welded
is attached to the end of the piston.

LFW machines are capable of delivering the dimensional precision, with high repeatability, required by the aerospace
industry. For example, the TiFab consortium demonstrated a positional tolerance value of ±0.025 mm for the process [21]
and the IHI corporation showed that the angular variance for a welded component was as low as 0.04� [78].

Recently, the TiFab consortium demonstrated that 95% of all titanium alloy aerospace components suitable for manufac-
turing by LFW can be produced using a machine with a maximum applied force of 50 tonnes [79].
4. Ti-6Al-4V linear friction welds

The LFW process is typically used for joining metals, however, it has been used to join plastics [80,81] and wood [82,83].
LFW is particularly effective for joining metals that have good high-temperature properties, i.e. compressive yield and shear
strength, and low thermal conductivities [1,8]. This allows for the generated heat to remain at the interface causing the inter-
face to rapidly heat and plasticise. This makes titanium alloys particularly suitable for the process, however many similar and
dissimilar material combinations have also been investigated with varying degrees of success [1,2,4,5,8,29,36,38,40,43,45,
49,57,60,61,63,64,66,67,84–103]. As the focus of this review is on the titanium alloy Ti-6Al-4V, the remainder of this section
will focus on the microstructure, mechanical properties, flash morphology, interface contaminant removal, residual stresses
and energy usage of Ti-6Al-4V linear friction welds. The effects of the machine tooling and processing conditions on these
responses are also discussed.

Ti-6Al-4V is an a+b alloy that was developed in the 1950s at the Illinois Institute of Technology, USA [66]. The alloy is
known for its excellent strength to weight ratio. It is the most commonly used titanium alloy - approximately 50% of all



Fig. 7. Schematic of (a) mechanically operated motion (image courtesy of TWI [2]) and (b) hydraulically operated motion [77].
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titanium alloys used are of this composition [58,66]. However, the material is comparably expensive to other metals, hence
its interest for LFW. The Ti-6Al-4V alloy consists of approximately 6% aluminium, which stabilises the a phase, and 4% vana-
dium, which stabilises the b phase [104,105]. The b phase constitutes ten percent by volume fraction at room temperature



Fig. 8. Macroscopic section of a Ti-6Al-4V linear friction weld [15]

Fig. 9. (a) Widmanstatten [15], (b) Martensite [15], and (c) TMAZ [13].
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Fig. 10. Thermal profiles in Ti-6Al-4V linear friction welds showing the effects of the rubbing velocity, v r , pressure, Pn , and in-plane width. These profiles
were obtained from FEA [13,14].
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[106]. Ti-6Al-4V is commercially produced to have one of three types of microstructure [69]. These are fully lamellar, fully
equiaxed and bi-modal. Each type has its own benefits and draw backs. It should be noted that the wrought Ti-6Al-4V typ-
ically used in the literature for the linear friction welding process, where reported, tends to be of the bi-modal microstruc-
ture [6,13–15,34,35,41,44,53,56,58,70,71,107].
4.1. Microstructure and thermal observations

Regardless of the process inputs and geometry of the workpieces used the macrostructures of Ti-6Al-4V linear friction
welds are similar in appearance in that they have several distinct zones: a weld centre zone (WCZ), a thermo-
mechanically affected zone (TMAZ) and a heat affected zone (HAZ), and are surrounded by the flash [6,13–16,34,35,53]. A
typical example of a weld is shown in Fig. 8. Technically the WCZ and the TMAZ are both ‘‘thermo-mechanically affected
zones” but due to the vastly different microstructures they possess they are often considered separately
[2,6,8,13,14,34,58]. The WCZ experiences significant dynamic recrystallisation (DRX), the TMAZ does not. The material in
HAZ is not deformed mechanically but is affected by the heat. The region from one TMAZ/HAZ boundary to the other is often
refered to as the ‘‘TMAZ thickness” or the plastically affected zone (PAZ) [13,14,18,108–110]. For the remainder of this article
this region will be refered to as the PAZ.

The region of material that experiences themost significant change during the LFWprocess is theWCZ. The temperature at
the interface surpasses that of the b-transus temperature [6,7,13,14,39,55,58,78] – 980 sC to 1010 sC depending on the quan-
tities of the interstitial elements – transforming the a-grains into b-grains. The WCZ also experiences large strains and strain
rates (up to 2500 s�1) during processing [7,13,14], which results in significant dynamic recrystallisation of the high-
temperature b-phasematerial [6,41,111,112]. The fully b-transformedmicrostructure cools rapidly after the oscillatory phases
of the process, preventing b-grain coarsening, resulting in a Widmanstätten [6,8,13–15,18,34,56] or Martensitic
[6,15,18,34,113] microstructure, as shown in Fig. 9(a) and (b), respectively. The difference, according to Ahmed and Rack
[114], is due to the rate of cooling from the single b-phase. If theweld cools at a rate faster than 410 sC s�1 a diffusionless trans-
formation occurs resulting in Martensite; according to Karadge et al. [18] some metastable b-phase may also remain. If the
weld cools at rate slower than 410 sC s�1 then a diffusional transformation occurs resulting in aWidmanstätten morphology.

The majority of researchers suggest that the microstructure of the TMAZ does not reach the b-transus as fragments of the
a-grains from the parent material are still present [6,18,35,55,58]. These grains tend to be deformed, elongated and re-
orientated in the direction of oscillation [2,8,13–15,35,109]; see Fig. 9(c).

It should be noted that due to the structural stability of Ti-6Al-4V below temperatures of 800 sC [94,115] it is often dif-
ficult to detect a purely heat affected zone. However, a HAZ is more noticeable in welds that are produced with low rubbing
velocities [16].

The extent of the PAZ and HAZ are very dependent on the processing conditions used. An increase of the amplitude and
frequency (rubbing velocity) has been shown to reduce the extent of the HAZ while having a minimal effect on the PAZ. This
is due to the effects of the rubbing velocity on the generated thermal profiles. As shown by comparing the blue and green
lines in Fig. 10, the greater rubbing velocities increase the gradient of the thermal profile, reducing the extent of material



Fig. 11. An illustration of the workpiece dimensions, where ‘x’ is in the direction of the oscillations (in-plane width) and ‘y’ is out-of-plane to the
oscillations.
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above 800 sC. The increased thermal gradient is a consequence of the higher power input generated by the larger rubbing
velocities, which causes the interface material to heat and plasticise more rapidly during phase 1, then shorten much more
rapidly during phases 2 and 3. Therefore reducing the time the heat has to conduct away from the weld interface [15]. This
may explain why HAZs are more noticeable with low rubbing velocities – a greater extent of the weld materials is above
800 sC therefore making the HAZ more observable to the naked eye [7,14,15,46,108]. Although the rubbing velocities have
a big effect on the thermal profiles they have minimal effect on the extent of the PAZ [13,14,108]. McAndrew et al. [13–15]
demonstrated that for noticeable material deformation to occur in Ti-6Al-4V linear friction welds the temperature of the
material must approach the b-transus. As shown by comparing the blue and green lines in Fig. 10, despite the big difference
in the thermal profiles, the extent of material at or above the b-transus is minimal, hence a minimal difference in the extent
of the PAZ for different rubbing velocities. Furthermore, many authors agree that an increase of the rubbing velocity
increases the interface temperature [7,13,14,46,108].

An increase of the pressure decreases the extent of the HAZ and PAZ [2,13,14,34,46,78,110]. This phenomenon can be
explained by the effect of the pressure on the power input and burn-off rate. An increase of the pressure results in the
burn-off rate being increased by a greater percentage than the power input [14]. Although more heat goes into the weld
it is expelled at a faster rate. This decreases the time the heat has to conduct back from the interface, decreasing the extent
of the HAZ and PAZ. Interestingly, this phenomenon also has an effect on the interface temperature. The material farther back
from the interface is much cooler in welds produced with higher pressures, as shown by comparing the blue and black lines
in Fig. 10. When this cooler material reaches the weld interface it effectively cools the weld producing a lower interface tem-
perature [13–15,34,47,110]. According to Kuroki et al. [78] and Wanjara et al. [6] the a-phase lamella in the WCZ is increas-
ingly refined when produced with larger applied forces. Moreover, Wanjara et al. [6] showed that an increase of the applied
force increases the size of the DRX b-grains in theWCZ. This observation is in contrast to Attallah et al. [110], who for Ti-6246
welds showed that an increase of the applied force decreases the DRX b-grains in the WCZ. Consequently, the authors of this
article believe the effects of the processing conditions on the microstructure need to be further investigated.

There is good agreement among authors on the effects of the workpiece geometry on the PAZ, HAZ and microstructure of
Ti-6Al-4V linear friction welds [13,18,116,117]. Karadge et al. [18], for an identical combination of process inputs, showed
that the post-weld interface grain size and the extent of the PAZ decreased when the workpiece dimension in the direction
of oscillation (‘x’ in Fig. 11) was decreased; hereafter the ‘x’ value in Fig. 11 is referred to as the ‘‘in-plane width”. McAndrew
et al. [13,117] investigated the reasons for this phenomenon. In general, a reduction of the in-plane width increases the burn-
off rate which results in rapid expulsion of the heated interface material [13,116,117]. This reduces the time the heat has to
conduct back from the weld interface, reducing the extent of the material above the b-transus and therefore the PAZ, as can
be seen by comparing the blue and red lines in Fig. 10. Moreover, a reduction of the in-plane width decreases the interface
temperature for the same reason an increase of the pressure does [13,116,117]. The finer microstructure for the welds that
were produced with the smaller in-plane widths could have been due to the higher strain rates experienced at these condi-
tions [13]. This would have caused more recrystallisation during processing, refining the b-grains [112,115]. Furthermore,
according to Gil et al. [118], the Widmanstätten morphology is finer with faster cooling rates. McAndrew et al. [13] showed
that the post-oscillatory motion cooling rate can be dramatically increased when welds are produced with smaller in-plane
widths. For example, for welds produced with 40 mm, 20 mm and 10 mm in-plane widths at an average rubbing velocity of
540 mm�s�1 and a pressure of 125 MPa the centre of the weld interface cooled from the b-transus temperature to 500 sC at a
rate of 110 sC s�1, 210 sC s�1 and 320 sC s�1, respectively. This phenomenon was due to the narrower band of highly heated



Fig. 12. Microhardness maps for a Ti-6Al-4V coupon to plate weld. Note that the harder regions correspond to the PAZ [116].

Fig. 13. (a) Crystallite orientation in the PAZ in a full-scale specimen, and (b) texture type [18].
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material produced with smaller in-plane widths; see Fig. 10. The narrower band of heated material had less heat to be con-
ducted from the interface region into the bulk material, allowing for a faster rate of cooling. The more refined WCZ
microstructure for the welds produced with the smaller in-plane widths may, according to the literature, possess superior
mechanical properties [58,119,120]. This observation suggests that there is a benefit to oscillating the workpieces along the
shorter of the two interface contact dimensions as the temperature will be reduced and the mechanical properties improved



Fig. 14. TMAZ hardness: (a) higher than parent [53] and (b) lower than parent [6].
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[13,117]. Worthy of note, the out-of-plane dimension (‘y’ in Fig. 11) has been shown to play little effect on the extent of the
HAZ and PAZ, and microstructure [13,16,116].

To date, much of the academic research into LFW has been concerned with the joining of workpieces with identical con-
tacting surface dimensions [3,13–15,18,24,34,35,48,53,58,107,110,121,122]. These geometries tend to generate a PAZ and
HAZ that are symmetric around the weld interface. There is an industrial interest to understand the joining of dissimilar
sized workpieces. To address this issue, Astarita et al. [123], Schroeder et al. [116] and Lee et al. [24] investigated the effects
of joining a Ti-6Al-4V coupon to a plate of the same material, as illustrated in Fig. 12. The investigations showed that the
coupon penetrates the plate, generating a concave PAZ [24,116]. For a comparable amplitude, frequency and pressure the
coupon to plate configuration had a 50% reduced burn-off rate when compared to a coupon to coupon weld [116]. The lower
burn-off rate is likely to cause a different thermal cycle, therefore generating differing microstructures between the two
welded samples even though the process input parameters were identical. However further research would be required
to investigate this hypothesis. According to Astarita et al. [123], the lamella microstructure in the WCZ and TMAZ are
reduced in size when higher forging forces are used to produce Ti-6Al-4V coupon to a plate welds. Unless explicitly stated,
the discussions for the remainder of this article are focused on the joining of workpieces with identical contacting surface
dimensions.

4.1.1. Texture
Karadge et al. [18] investigated the textures of Ti-6Al-4V laboratory (small) and full (large) scale welds. Both samples dis-

played a strong transverse texture {1 0 �1 0} h1 1 �2 0i at the WCZ. However, the texture farther back from the weld line
(TMAZ) was noticeably different between the two welds. As shown in Fig. 13, the full scale weld exhibited alternating bands
of transverse {1 1 �2 2} h1 1 �2 3i textures, while the laboratory scale weld did not. The precise reasons for the different tex-
tures in the TMAZ were unknown. However, it was suggested that the differences in the observed texture could be attributed
to the effects of weld sizes on the temperature rise during processing and subsequent cooling. Moreover, the post-heat treat-
ment was shown to have minimal effect on the texture results. Romero et al. [34] showed that welds produced with low
pressures exhibit a strong transverse texture in the WCZ – in agreement with Karadge et al. [18] – however, welds produced
with high pressures display an almost random texture at the WCZ. The reason for this observation is not entirely clear.
Recent work by Guo et al. [124] showed that the texture development within a weld was highly dependent on the amount
of transformed b-phase and that the deformation of the primary a-phase grains had limited effect on the texture
development.

4.2. Mechanical properties

Mechanical testing has shown that the hardness, using the Vickers’ hardness test, in theWCZ (422 ± 11 [53], 425 ± 10 [34]
and 398 ± 3 [6]) is higher than that of the parent material (302 ± 20 [53], 328 ± 20 [34] and 317–352 [6]). The increased hard-
ness in the WCZ is due to the refined microstructure [35,42,53]. However, there appears to be some conflicting results when
it comes to the hardness in the TMAZ. Some researchers suggest that the hardness in the TMAZ is between that of the WCZ
and the parent material [53,58,78], as shown in Fig. 14(a), while other researchers suggest that the hardness in the TMAZ can
be lower than that of the parent material [6,34], as shown in Fig. 14(b). According to Grujicic et al. [58] a coarsening of the b-
grains in the TMAZ was responsible for the inferior hardness values. Romero et al. [34] stated that the conditions that cause
inferior TMAZ properties are likely to be process input dependent. The researchers who achieved welds with superior TMAZ
properties used higher amplitudes of oscillation. The increased amplitude may have increased the gradient of the thermal



Fig. 15. Weld interface corner of an experimental Ti-6Al-4V ‘T’ joint linear friction weld showing an unbonded region (image courtesy of TWI).
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profile, which in turn increased the rate of cooling once the oscillations had stopped [13]. The faster rate of cooling would
have prevented grain boundary and alpha-phase lathe growth in the TMAZ [69], therefore giving superior hardness proper-
ties [69]. Kuroki et al. [78], showed that an increase of the applied pressure increases the hardness in the WCZ and TMAZ.

Assuming a Ti-6Al-4V linear friction weld is free from interface contaminants (discussed in more detail in Section 4.4), the
weldment will typically fail in the parent material when tensile tested [2,6,8,22,44,78]. If interface contaminants are present
the weldment will fail at the weld line. Interestingly, Wanjara and Jahazi [6] demonstrated that a weldment can fail in the
TMAZ when tensile tested if it is produced with a low power input. This was possibly due to the same reason for the inferior
hardness values in the TMAZ, i.e. the lower power input allowed for a shallower thermal gradient which reduced the cooling
rate post-oscillatory motion [13]. This would cause increased grain boundary and alpha-phase lathe growth, resulting in the
HAZ being softer than the parent material [69].

Linear friction welded Ti–6Al–4V in the as-welded state has been investigated at various stress amplitudes ranging from
the high cycle fatigue (HCF) to the low cycle fatigue (LCF) regime [22,78,109,125]. According to Wen et al. [125] the fatigue
cracks initiated from the surface or near-surface defects of the parent material for all cases. Stinville et al. [109] supported
this observation and noticed that the crack nucleation always occurred in the parent material, regardless of the frictional
pressure and maximum stress level applied. Kuroki et al. [78] showed that the HCF results were unaffected by the applied
pressure used to produce the welds. Uniquely, Flipo et al. [22] showed the fatigue failure to occur along the weld region.
However, it was noted that the fatigue performance exceeded the minimum design allowable values for AMS4911 [22].
The reasons for the difference between these findings are currently unclear, but it is possible the combination of process
parameters used was responsible [22,109]. Recently, Flipo [126] presented the HCF and LCF results for post weld heat treated
samples. The results far exceeded the values of the parent material and had minimal scatter.

The impact toughness of titanium alloy linear friction welds is much harder to predict because the microstructure is very
heterogeneous [3,35,48]. However, the value at the interface of a Ti-6Al-4V linear friction weld surpasses that of the parent
material [3,35].

Suleimanova et al. [127] presented the torsional strength results of linear friction welded VT6 (Russian version of Ti-6Al-
4V) produced at a frequency, amplitude, pressure and burn-off of 50 Hz, 2 mm 100 MPa and 4 mm, respectively. The tor-
sional strength value of the weld was superior to the parent material due to the test failing in the parent material at a rota-
tion degree of 110�.

Addison [1,2] noticed that fine features of Ti-6Al-4V linear friction welds, such as the corners of the workpieces, can con-
tain a small unbonded region; see Fig. 15. Insufficient bonding at the interface results in welds having poorer mechanical
properties [2]. McAndrew et al. [117], using finite element analysis (FEA), showed that the unbonded region at the corners
is very noticeable at low burn-off values. The unbonded regions can be eliminated with a burn-off increase. This is because as
the burn-off increases, the heat from the flash and interface conducts into the corners causing them to soften and plastically
deform. This results in the corner material merging with the rest of the interface, forming a bond at the corner and elimi-
nating a source of inferior mechanical properties.

A repair weld involves the joining of a new workpiece onto the ‘‘stub” of a previously broken weldment. The mechanical
properties and macroscopic appearance of a repaired Ti-6Al-4V weld were that same as the initial weld [1]. This is an impor-
tant feature as it will allow for the repair of high-cost components, such as blisks.
4.3. Flash morphology

The weld region is surrounded by the flash in all directions, as shown previously in Fig. 1(b). The mechanism in which the
viscous material is forced from the weld is sensitive to the processing conditions used. For the flash generated in-plane to the
oscillations, two formation mechanisms are identified for Ti-6Al-4V linear friction welds [2,7,13,14,46,108,116], one that
produces ‘‘ripples” in the flash and one that produces a ‘‘smooth” morphology, as shown Fig. 16(a) and (b), respectively.



Fig. 16. In-plane flash observations (a) ripple morphology [13], and (b) smooth morphology [16].
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The ripple morphology occurs when the flash separates from the workpieces as the maximum amplitude displacement
position is approached, as shown in Fig. 17(a). At the point of separation, very high strain rates (greater than 1500 s�1)
are produced; see Fig. 17(d). The high strain rate regions correspond to significant, local yielding. This phenomenon exposes
a fresh layer of highly heated material which is then sheared from the interface into the flash as the oscillatory motion is
reversed. Each sheared layer corresponds to a ripple in the flash. Schröder et al. [108] andMcAndrew et al. [13] demonstrated
that the ripples are more noticeable when the ratio between the PAZ and the oscillation amplitude is reduced. Schröder et al.
[108] suggested values below a ratio of 1 were required to generate the ripples. The ‘‘smooth” morphology is produced when
the flash does not separate from the workpieces. This results in the interface material being extruded into the centre of the
flash as the oscillatory motion is reversed [13,108], as shown in Fig. 17(b). Regardless of the flash morphology type, for all
cases it has been shown that the boundary temperature between the rapidly flowing viscous material and the workpiece
material with negligible flow approximately corresponds to the b-transus temperature for this alloy, as shown in Fig. 17
(c). This is to be expected as significant material softening occurs at temperatures corresponding to the b-transus. Conse-
quently, the thickness of the flash is directly related to the extent of material that is above the b-transus temperature, as
shown in Fig. 17(c).
4.4. Interface contaminant removal

Interface contaminants, such as oxides and foreign particles, affect the properties [6] and possibly the service life of a
weld [7] and are therefore a primary cause for a Ti-6Al-4V linear friction weld being defective [6,8,10,11,13,14]. Oxides
are generated during phase 1 when the hot interface material reacts with the atmosphere [128]. It is also possible that some
oxides may remain at the interface due to insufficient pre-weld cleaning. The foreign particles may constitute oil or grease
from workpiece machining which were also not removed during pre-weld cleaning. At the start of phase 2 the oxides and
foreign particles become trapped at the interface during the merging of the viscous material. According to Bhamji et al.
[8], it is important that the contaminants are expelled from the interface into the flash as this allows for full metal to metal
mixing and a bond being formed.

McAndrew et al. [13,14] and Turner et al. [7] showed that the interface contaminants are increasingly expelled into the
flash as the burn-off is increased, as shown in Fig. 18. Recent research has shown that the amount of burn-off required to
remove the contaminants into the flash reduces with the extent of the PAZ [13,14]. As shown earlier, the PAZ is a result
of the generated band of highly heated material, consequently a smaller PAZ results in a lesser volume of rapidly flowing
material being expelled with the contaminants, as illustrated in Fig. 19.

As shown in Section 4.1, the PAZ is highly dependent on the processing conditions used. Consequently, so is the amount of
burn-off required to expel the contaminants from the weld interface into the flash. As shown in Fig. 20, the burn-off required
to expel the contaminants from the weld interface into the flash is reduced with an increase of the pressure or a reduction of
the in-plane width. An increase of the rubbing velocity minimally decreases the required burn-off. This is to be expected as
the rubbing velocity minimally affects the extent of the PAZ. Based on these observations, there may be a benefit to using
larger pressures and oscillating the workpieces along the shorter of the two interface-contact dimensions when producing
Ti-6Al-4V welds. This is because the burn-off required to remove the interface contaminants is reduced. Hence for the same
burn-off, the factor of safety on contaminant removal is greater.

Wanjara and Jahazi [6] suggested that a weld made with a low power input will have contaminants present at the inter-
face. The low power inputs in the work by Wanjara and Jahazi [6] were produced using lower values of frequency, amplitude
and pressure. The authors of this article believe that a possible reason for the existence of contaminants in the low power
input welds was due to insufficient burn-off being applied for the conditions investigated [13,14].



Fig. 17. Flash formation and morphology determined from FEA, showing: (a) the mechanisms behind the ripple morphology, (b) the mechanisms behind
the smooth morphology, (c) the boundary temperature between the rapidly flowing viscous material and the workpiece material with negligible flow, and
(d) region of high strain rate [13].

240 A.R. McAndrew et al. / Progress in Materials Science 92 (2018) 225–257
In rare circumstances, voids due to porosity have been observed at the interface of titanium alloy linear friction welds
[6,39,44]. This often occurs when comparatively low values of burn-off are used. Lang et al. [39] noticed that the voids
are typically located toward the edges of the weld interface for titanium alloy welds. This suggests that the porosity was
due to an initial foreign particle (probably trapped surface gasses) which had not been expelled into the flash due to an inad-
equate amount of burn-off. This is believed because defects typically associated with fusion welding processes, such as



Fig. 18. (a) High magnification of the contaminants present at the weld interface of a Ti-6Al-4V weld, (b) contaminants after 0.5 mm of burn-off, (c)
contaminants being expelled toward the edges after 1 mm of burn-off, and (d) no contaminants after 3 mm of burn-off [14].

Fig. 19. An illustration of the contaminants (black dots) entrapped in a band of rapidly flowing material (red contour) for: (a) a thin band of rapidly flowing
material, and (b) a large band of rapidly flowing material.
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porosity, are typically avoided during solid-state joining process. This is primarily due to the avoidance of the melting and
solidifying of the material [11,42,51–57].

4.5. Residual stresses

Residual stresses are present in Ti-6Al-4V linear friction welds after processing [34,47,70]. The residual stresses are gen-
erated via two mechanisms. The first is due to the plastic deformation experienced by the workpieces at elevated temper-
atures [51,107]. The second is due to the thermally induced strain [47,129], which results from the difference in thermal
expansion and contraction of the material during heating and cooling. The primary mechanism is due to the thermally
induced strain that occurs during the post-oscillatory motion cooling [47]. Understanding residual stress formation is impor-
tant because it negatively influences weld performance and life [8,47,107].

Residual stresses have been investigated for Ti-6Al-4V linear friction welds using:

� Non-destructive testing, such as synchrotron X-ray diffraction [34,47,70] and neutron diffraction [107]. Both of these
methods involve calculating the strains and stresses from changes in the crystal lattice spacing.

� Destructive testing, such as the contour method [70,107]. The contour method is far cheaper than the non-destructive
methods, but the residual stresses are only measured in the plane of the sectioning, i.e. the contour. With respect to
LFW, the contour method tends to show good residual stress profile correlation with well-established measuring tech-
niques (i.e. non-destructive), however the peak tensile stresses tend to be underestimated [70,107], even by as much
as 200 MPa [70].



Fig. 20. The amount of burn-off required to expel the interface contaminants (denoted as point tracking in FEA) as a function of the in-plane width, rubbing
velocity, v r , and pressure, pn [13].

Fig. 21. Residual stress formation with respect to the workpiece dimensions. Note that ‘x’ is larger than ‘y’.
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� Numerical models [47,130–132]. Provided suitable input data is used, models have been able to predict the origin of
residual stresses.

Regardless of the process input combination and direction of oscillatory motion used, there is a broad agreement
[34,47,70,107,131,132] that the residual stresses are generally largest in the direction of the longest contacting surface
dimension (‘x’ in Fig. 21). Followed by the shortest contacting surface dimension (‘y’ in Fig. 21), and lowest in the direction
normal to the weld plane (‘z’ in Fig. 21). The residual stresses at the weld interface tend to be tensile with peak values of
around 600–1000 MPa being common [34,47,107]. As shown in Fig. 22, a sharp drop in the stresses either side of the weld
line is often observed, becoming compressive until they eventually approach zero [34,47,70]. Romero et al. [34] and Bhamji
et al. [8] claimed that since the weld plane is longer in the ‘x’ direction than in the ‘y’ direction it is likely that there is a larger



Fig. 22. Influence of the forging pressure ‘P’ on the residual stress components in the x, y, z coordinates [34].
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thermal gradient in the ‘x’ direction, hence the increased residual stress. Bhamji et al. [8] also claimed that the small thermal
mismatches in the ‘z’ direction may be related to the high weld pressure that is applied in the axial direction, which results in
sufficient plasticity to compensate for any mismatch. The authors of this article, however, believe that another reason for the
lower residual stress values in the ‘z’ direction is due to a uniform expansion and contraction of hot material which therefore
generates a plastic strain field with very few mismatches along this direction.

Post-weld heat treatment (PWHT) has been shown to significantly reduce the residual stresses in linear friction welds
[70], even by as much as 90% [8]. According to a review by Bhamji et al. [8] the residual stress relief is dependent on the
size of the workpiece geometry. For example, in a comparatively smaller welded sample negligible residual stress remained
after PWHT, whereas in a larger welded sample significant stresses remained after an identical PWHT. Both welds displayed
similar residual stress profiles prior to PWHT. In addition to residual stress relief, PWHT is also used to homogenize the
microstructure [89] and improve the mechanical properties [44] of linear friction welds.

Romero et al. [34], Nikiforov et al. [130], Fu et al. [132] and Turner et al. [47] showed that the peak tensile residual stresses
can be minimised if a weld is produced with higher applied pressures, as shown in Fig. 22. As detailed in Section 4.1, this
phenomenon can be explained by the relationship between the pressure and interface temperature. The higher pressures
reduce the interface temperature and therefore the thermal mismatch, which reduces the residual stress intensity [34].
Recent FEA work by Bühr et al. [131] demonstrated that a high rubbing velocity produced a higher peak tensile residual
stress at the weld interface (‘x’ and ‘y’ in Fig. 21) distributed over a narrow region, while a lower rubbing velocity produced
a lower peak residual stress distributed over a wider region. Interestingly, in the applied force direction (‘z’ in Fig. 21) the
trends of the rubbing velocities on the peak tensile stress values were reversed.
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4.6. Energy usage

Several authors [3,6,31,32,48,53] have investigated the effects of the process inputs on the power density input for Ti-6Al-
4V linear friction welds using Eq. (2) or Eq. (3):
q0 ¼ l � Pn � v r ð2Þ
where q0 is the power density, v r is rubbing velocity, Pn is normal pressure, and l is coefficient of friction.
q0 ¼ A � f � Pn

2 � p � As
ð3Þ
where q0 is the power density, A is the amplitude of oscillation, f is the frequency of oscillation, Pn is the normal pressure and
As is the cross sectional surface area.

Analysis of the units in Eq. (3) indicates that the parameters on the right do not give the correct units for power per unit
area. This may be due to a poorly named variable; the pressure term should have been force. Also, the coefficient of friction is
not considered. Regardless of the equation used, many of these authors used average values for the rubbing velocity, coef-
ficient of friction and pressure, thus only giving an approximation of the power input. In addition, they did not investigate
the effects of the process inputs on the overall energy required to make a weld, which is of economic and environmental
concern [49].

Ofem et al. [49], addressed this by demonstrating that the output data from a LFW machine can be used to calculate the
instantaneous power input, q in the form of [49]:
q ¼ Fint � v ð4Þ
where Fint is the interface force of the workpieces and v is the instantaneous velocity. By integrating equation 4 as a function
of time, the overall energy used to make a linear friction weld can be estimated:
Ex ¼
Z tt

0
Fint � vdt ð5Þ
where Ex is the total energy inputted to a weld; and tt is the total time to make the weld.
This method of calculating the power and energy includes the effects of the changing velocity and friction coefficient over

each cycle of oscillation. McAndrew et al. [15] expanded on the approach identified by Ofem et al. [49] to investigate the
energy usage of Ti-6Al-4V linear friction welds. It was shown that there is an advantage to using high rubbing velocities
to minimise the overall energy input required to make a weld. This was a consequence of the higher power input generated
by the larger rubbing velocities, which caused the interface material to heat and plasticise more rapidly during phase 1, then
shorten much more rapidly during phases 2 and 3. This reduced the overall duration of the weld and hence the energy
wasted due to conduction, convection and radiation. An increase of the applied pressure had a similar effect on the energy
required to make a weld for the same reasons as the rubbing velocity. An increase of the burn-off was shown to increase the
overall energy required to make a weld due to the longer duration of the process. Moreover, analysis of LFW machine data
indicates that the rubbing velocity has a far greater effect on the generated power input than the applied pressure
[15,74,133].
4.7. Tooling effects

There have been relatively few investigations into the effects of the LFW machine tooling (workpiece clamping) on the
processing of linear friction welds. The authors are only aware of two such investigations [122,134].

Li et al. [122] analysed high-speed photography of the LFW process and noticed that the workpieces do not oscillate in a
rigid manner. In fact, it was noticed that the workpieces can move in the clamps, which generates a ‘‘micro swing” effect; see
Fig. 23. A model was produced to investigate this effect for Ti-6Al-4V welds. The models showed that the burn-off rate
increased with larger angles of micro-swing, which was due to one workpiece digging further into the other and extruding
more material per cycle. According to Li et al. [122], the different micro-swinging angles had negligible effect on the interface
temperature at the centre of the weld.

Yamileva et al. [134] investigated the effects of the clamping distance from the weld interface (denoted by ‘H’ in Fig. 24
(a)) on the phase 1 thermal profiles in Ti-6Al-4V welds. The ‘H’ value was shown to have a significant effect; see Fig. 24(b). It
is unclear at what point during phase 1 the thermal profiles were recorded, although it is very unlikely that it was at the end
of the phase as the b-transus temperature had not been reached [15]. Unfortunately the work did not investigate the effects
of the clamping during the flash forming phases of the process. This would have been an interesting investigation as the
clamping may have an impact on the interface contaminant expulsion if the generated thermal profiles are widely different
[13,14].



Fig. 23. An illustration of the ‘‘micro-swing” effect for Ti-6Al-4V linear friction welds [122].
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5. Process modelling

In practice, many aspects of the LFW process are difficult to measure experimentally, particularly the phenomena asso-
ciated with the weld interface, such as the temperature and deformation history. This is primarily due to the rapid nature of
the process and the fact that the interface of the workpieces cannot be observed during welding. Computational modelling
offers a pragmatic way to investigate the weld cycle history, allowing for an insight into the rapidly evolving process
[7,47,48,135]. Weld modelling may be divided into two categories: analytical and numerical.
5.1. Analytical modelling

Analytical models use equations to predict the outputs from the process [136]. The models often involve many simplifi-
cations, such as constant material properties [7,32,46] and one-dimensional heat flow [32], however a good match with
experimental results can still be attained [7,32,46,136]. From a practical point of view, analytical modelling of heat flow
has the advantage of being easier to setup [137] and can have quicker computational times than numerical models [136].

There are a limited number of papers published on analytical modelling of the friction welding processes and even fewer
on linear friction welding [7,32,46,138–140]. This is due to the complexity of these thermomechanical processes and the
small number of active research groups on linear friction welding worldwide. These limitations are affecting all friction
welding variants but are pronounced in the case of LFW, which has the additional disadvantage that researchers who engage
in research in the most studied variant of FSW do not apply their expertise to LFW. As stated, the literature on analytical
models of Ti-6Al-4V linear friction welding is relatively sparse when compared to experimental and numerical investiga-
tions. Some of the primary findings are reported below.
5.1.1. Phase 1 thermal modelling
Vairis and Frost [32] developed thermal model for the LFW of Ti-6Al-4V workpieces during phase 1. The one-dimensional

thermal model was based on the ‘‘heat flux being applied to a solid bounded by two parallel planes” approach, described by
Fig. 24. Clamping effects: (a) a model showing the parameter ‘H’ that was varied, and (b) the generated phase 1 thermal profiles with different values of ‘H’
for Ti-6Al-4V linear friction welds [134].



Fig. 25. Comparison between the analytical models and experimental thermocouple data at 1.6 mm back from the interface during phase 1 [32].
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Carslaw and Jaeger [141]. One of the parallel planes was assumed to be the rubbing surface. This allowed for the tempera-
ture, T, at any distance back from the interface, x, as a function of time, t, to be determined. The equation was as follows:
T ¼ 2ðmþ1Þq0k
1
2t

ðmþ1Þ
2 C 1

2mþ 1
� �

k

X1
n¼0

imþ1erfc
ð2nþ 1ÞL0 � x

2ðktÞ12
þ imþ1erfc

ð2nþ 1ÞL0 þ x

2ðktÞ12

( )
ð6Þ
where k is the diffusivity,C the Euler gamma function, L0 is the length of overhang of the workpiece,m is a constant, q0 is the
heat flux, I is the temperature from the previous iteration, and the term erfc{x} is the complementary error function.

Vairis and Frost [32] assumed the following for their model:

� the heat flow was one dimensional
� there was no heat loss to the surrounding environment
� the co-efficient of friction linearly increased with the time from 0.25 to 0.55
� the true area of contact increased linearly with time from 0% to 100%
� the model was static, i.e. there was no transverse movement of the workpieces

As seen in the assumptions, the work by Vairis and Frost [32] assumed nomovement of the workpieces, so the model does
not account for the reciprocal movement with variable velocity. The model was investigated with linear (constant) and non-
linear (change with temperature) material properties. The results were compared to thermocouple recordings. As can be
seen in Fig. 25, the modelled temperature rise deviates significantly from the experiment values after two seconds for the
conditions that used constant material properties. The model that used non-linear material properties provided a better pre-
diction of the experimental temperature. Vairis and Frost [32] noted that the contribution of the exothermic reaction
between Ti and oxygen during phase 1 of the LFW process was shown to be negligible, despite the impressive visual effects
added to the welding of Ti-6Al-4V.

Although suitable for modelling the thermal fields during phase 1 of the LFW process, questions of the applicability of the
model must be raised for modelling the phase 3 thermal profiles; the model does not account for the burn-off, which helps to
cool the weld interface. The burn-off during phase 3 allows for a steady-state condition to be achieved, i.e. the heat expelled
during the burn-off approximately equals the heat generated from the viscous plastic deformation. Consequently, without
the inclusion of the burn-off, the temperature throughout the analytically modelled workpieces keeps rising and never
reaches a steady-state condition.

5.1.2. Phase 3 (Steady-State) thermal modelling
Turner et al. [7] proposed a one-dimensional heat flow model for estimating the thermal profiles during phase 3 of the

LFW process:
T ¼ T0 þ ½Tflash � T0� � exp �vss � x
a

n o
ð7Þ
where T is the temperature at any point, x, back from the interface; T0, is the initial temperature of the material; Tflash is the
temperature of the flash/interface region; v ss is the steady-state burn-off rate; and a is the thermal diffusivity (which was



Fig. 26. A three dimensional Ti-6Al-4V LFW process model [117].
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assumed to be temperature independent). Prior knowledge of the steady-state burn-off rate, vss, and the interface temper-
ature, Tflash , are required for the analysis, meaning the model has to be used retrospectively.

Turner et al. [7] compared the thermal profiles generated from their analytical model to those from numerical models. In
general, good comparisons were made for Ti-6Al-4V welds.

Schroeder et al. [46] manipulated equation 7 to estimate the thickness of the heat affected zone during phase 3 of the
process for Ti-6Al-4V workpieces. The equation was as follows:
xHAZ ¼ a � log½ðTflash � T0Þ=ðTHAZ � T0Þ� � As � q � H � ðTflashÞ � q�1 ð8Þ

where xHAZ is the thickness of the HAZ, a is the diffusivity, Tflash is the temperature of the flash, T0 is initial temperature of the
material, THAZ is the temperature of the HAZ furthest away from the interface (assumed to be 900 sC), As is the area of the
mating surfaces, q is the density, H is the specific enthalpy, and q is the power input. With the exception of the power input,
all of the parameters were assumed to be constant. In general, the model predicted the experimental trends well [46].

5.1.3. Phase 3 (Steady-State) strain rate modelling
Vairis and Frost [31], adapted a rotary friction welding analytical model to predict strain rates at the interface of Ti-6Al-4V

linear friction welds. The semi-empirical model was able to estimate interface strain rates for the different Cartesian direc-
tions of the weld interface (‘y’ and ‘x’ in Fig. 1(b)). It was shown that the strain rates were highest at the weld interface and
decreased farther back. The model showed that the strain rates appeared to be largest in the direction out-of-plane to oscil-
lation, i.e. the ‘y’ direction in Fig. 1(b). Moreover, the strain rates were shown to increase with an increase of the frequency of
oscillation, however, the peak values recorded from the analytical model (3.5 s�1) were much lower than those recorded by
the numerical models of Turner et al. [7] (2500 s�1) and McAndrew et al. [13,14] (860–1740 s�1).

5.2. Numerical modelling

Analytical models often employ many simplifications, such as constant material properties [7,32,46] and one-
dimensional heat flow [32]. This limits their ability to provide accurate information in complex process situations
[10,142]. Therefore, for welding simulations, computational numerical modelling is often employed to discretise a problem
into more manageable sub-problems. The solutions to these problems are then approximated at finite time steps
[136,143,144].

To the authors’ best knowledge, all computational numerical investigations into the LFW process for the joining of Ti-6Al-
4V used finite element analysis (FEA) [7,13–16,24,32,46–48,58,108,116,121,122,130,134,144–152], which is also referred to
as the finite element method/modelling (FEM). Several FEA packages have been used to model the LFW process, including:
Abaqus, Ansys, DEFORM, Elfen and Forge. Fig. 26 shows an example of a numerical LFW process model developed using
DEFORM.

LFW process models have been used to obtain data on various Ti-6Al-4V weld responses, such as: residual stress forma-
tion [47], interface contaminant expulsion [7,13,14,24], strain rates [7,13,14], flash morphology [7,13,14,46,108,116], flash
formation rates [7,13,14,46,48] and thermal fields [7,13–15,24,32,46–48,58,116,150,153,154]. The primary advantage of
FEA is that it allows for the prediction of many outputs that are difficult to obtain experimentally.



Fig. 27. Modelling approaches: (a) one workpiece, (b) two workpieces (c) a single body representing two workpieces [13,14].
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5.2.1. Reference frames and meshing
The meshing of a model should be tailored to the outputs of interest. For example, a model that is required to predict

plastic deformation will require a finer mesh than a purely thermal analysis [144]. A decrease of the average mesh element
size increases the accuracy of the results but results in more elements being required, increasing the computational time [7].

As the plastic deformation primarily occurs at the interface during LFW, many authors use a mesh that is finer at the
interface and coarser farther back. Typical interface mesh element lengths used for LFW process models are between 1
mm and 0.08 mm [7,13–16,24,32,46–48,58,108,116,121,122,130,134,144–152]. 2D modelling values tend to be closer to
the latter end of the scale, with values below 0.25 mm being optimal for capturing the flash morphology [7,13,14,46,144].
3D LFW process models require substantially more time than 2D models to complete a simulation due to the increased ele-
ment count, and terms included in the heat and mass flow equations. Consequently, authors often trade some of the accuracy
of the results to decrease the simulation time. This is achieved by using larger elements at the interface region (0.5–1 mm)
[16,117,122,149]. This approach is also used in other 3D friction based process models. For example, when using DEFORM to
3D model the friction stir [155–157] and friction stir spot [158] welding processes the plastic deformation zone was meshed
with elements of between 0.8 mm and 0.5 mm in length – values considerably larger than 0.25 mm.

The ‘‘Arbitrary Lagrangian Eulerian” (ALE) approach was developed for solving problems that could not be suitably
described by the Eulerian or Lagrangian approach [136]. The ALE approach, as the name suggests, is a hybrid of the Eulerian
and lagrangian methods. The ALE approach allows a mesh to function in the traditional Lagrangian fashion until the mesh
becomes too highly distorted. During a re-mesh the most distorted regions of the mesh are then repositioned to a pre-
defined Eulerian mesh density. The ALE approach appears to be the dominant method used when producing FEA process
models of Ti-6Al-4V linear friction welds [13–15,46,48,58,98,108,116,149,153].
5.2.2. LFW modelling approaches
Various authors have developed two and three dimensional (2D/3D) computational Ti-6Al-4V LFW process models [7,13–

15,24,46–48,58,108,113,116,121,134,145,147,149,151,152,159]. The majority of the modelling work consists of 2D models,
which have been shown to successfully provide an adequate insight into many of the phenomena associated with LFW, as
previously shown in Fig. 17. As stated above, the main advantage of 2D models is the quicker simulation times. This makes
2D models particularly suitable for parametric studies [16,117]. However, by their nature, these models are unable to repli-
cate the flash transverse to the direction of oscillation, therefore limiting full process behaviour understanding [14]. 3D mod-
els have the advantage of providing an insight into the full multi-directional flow behaviour. This is particularly useful to
understand the material flow and thermal cycles at the corners of the workpieces – something 2D models cannot do.

According to the literature, there are three ‘‘traditional” approaches that can be used to model the LFW process. The first
approach, as evidenced by the early work by Vairis and Frost [32] involved modelling only one workpiece, which was oscil-
lated against a non-deformable surface, as illustrated in Fig. 27(a). This approach allows for quicker computational times as
only half of the geometry is modelled. The problem, however, is that the coefficients of friction need to be known so that the
thermal aspects of the model during phase 1 can be predicted accurately. Furthermore, due to only one workpiece being
modelled, it is impossible to model the flow behaviour after the two workpieces merge to each other; see Fig. 3(b).

As computational power increased, many authors expanded on the early approach to develop the second modelling
approach, which considered both workpieces [48,58,121,134,145,147,149,151,152], as illustrated in Fig. 27(b). Many of
the problems with this approach are the same as the first. For example, despite considering both workpieces, models of this
type show that they never truly merge during phases 2 and 3 – as happens in reality for Ti-6Al-4V [2,6,13,15] – meaning the
flow behaviour after the workpieces merge is still not considered.

The third approach, as shown in Fig. 27(c), was developed by Turner et al. [7], who noticed that prior to the work-
pieces merging there is negligible macroscopic plastic deformation, at least for the titanium alloy Ti-6Al-4V. Once a



Fig. 28. A schematic of the step-wise modelling approach developed by Bühr et al. [131].
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viscous layer is formed the process may be modelled as a single-body due to there being full contact between the two
workpieces. A temperature profile needs to be mapped onto the single-body model to account for the heat generated
prior to merging. This is vital, as the temperature profile will result in a low flow-strength for the material at the centre.
This enables the material at the centre to deform in preference to the surrounding material, allowing the single body to
represent two individual workpieces. Due to the merging of the interface material being modelled, this approach con-
siders the true interface flow behaviour and produces much better replications of the flash morphology for Ti-6Al-4V
workpieces [7,13,14,46,108]. The limitation of this approach is that the stages prior to workpiece merging are not
modelled.

In addition to the geometry setup, the user has the ability to decide on the type of analysis the model will provide: purely
thermal, elastic-plastic or plastic. The thermal analysis neglects the elastic and plastic effects, and requires very little com-
putational time. The elastic-plastic analysis allows for the inclusion of the elastic and plastic effects, therefore providing
greater accuracy and insight, however considerable computational time is added. Purely plastic models neglect the elastic
effects and assume incompressible flow, which is generally considered to be a ‘‘reasonable” assumption when significant
plastic deformation occurs [136]. Consequently, plastic models require less computational time than the elastic-plastic anal-
ysis. Turner et al. [7,47], Schroeder et al. [46,108,116] and McAndrew et al. [13,14] demonstrated that a purely plastic anal-
ysis during the oscillatory phases of the LFW process is sufficient to accurately capture the experimental trends. However,
the elastic-plastic analysis must be used during the post-oscillatory motion cool down period if the residual stress formation
is to be modelled [47].

Turner et al. [47] highlighted that the stresses generated during the oscillatory phases of the process (i.e. phases 1–3) only
play a minor role on the final residual stress field. This is because the temperatures recorded during phase 3 are above the
beta-transus temperature [13,14,60], allowing the material to reach a viscous state. Therefore, the stresses generated at
these temperatures are comparably very low [7,14,15,116] and are unlikely to affect the overall final residual stress field.
The residual stresses are primarily driven by the final thermal distribution and are principally generated during the post-
oscillatory motion cooling period [47]. Consequently, Bühr et al. [131,160] hypothesised that it is unnecessary to use the
three ‘‘traditional” LFW modelling approaches if only the residual stress field is of concern, as modelling of the oscillatory
motion is time consuming [16], involving complex re-meshing techniques. Bühr et al. [131,160] proposed a novel LFW mod-
elling approach that bypasses the dynamic oscillatory phases of the process and focuses on the post-weld cooling period, i.e.
the modelling approach targets the residual stress formation. To account for the thermal fields generated during processing,
Bühr et al. [131,160] applied a heat flux to the interface of their model. To account for the burn-off, a row of elements were
removed from the interface in a step-wise manner. The heat flux was then reapplied to the new elements. A schematic of the
modelling approach is shown in Fig. 28. Once the desired burn-off had been modelled the model was allowed to cool down to
predict the residual stress fields. The modelled thermal histories matched experimental thermocouple recordings well, sug-
gesting the simplified modelling approach is indeed viable as a numerical tool. However, experimental validation of the
model’s residual stress fields had not yet occurred.
5.2.3. Coupled analysis and process efficiency
All welding simulations generally comprise a thermal analysis and a mechanical analysis. These can be run simultane-

ously (coupled) or independently (decoupled). A decoupled analysis works on the principle that the thermal analysis is
run first and is used to form the basis of the subsequent mechanical analysis, i.e. no heat is generated during the mechanical
analysis. The analysis must be coupled if the mechanical aspects are going to have an impact on the thermal fields. Due to a
substantial amount of heat being generated via plastic deformation of the interface material during LFW, LFW process mod-
els must use the coupled analysis if the oscillatory phases are to be dynamically modelled [144].

During friction welding simulations the amount of mechanical energy estimated to be converted to heat when plastically
deforming the material varies. Typical values used are 90% [13,14,24,48,55,142,155] and 95% [58,96,108,158]. The remainder
of the energy is assumed to be associated with the phase transformations, changes in the grain boundary generation and
migration, dislocation density and evolution, and stored in the form of crystalline defects [96,155]. Some authors, however,
have assumed an efficiency of 100% [7].



Fig. 29. Modelling validation displaying: (a) burn-off histories for Ti-6Al-4V workpieces [13]; (b) thermal profile at the end of phase 1 for a Ti-6Al-4V weld
[15]; (c) flash morphology for a Ti-6Al-4V weld [7]; (d) residual stresses in an aluminium alloy weld [93]; and (e) the spatial distribution of the precipitate
mean radius (in microns) over the mid-plane/contact surface of the LFW joint in a Carpenter Custom 465, H1000 [96].
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5.2.4. Constitutive data
Two different approaches have been used to account for the material constitutive data in LFW process models for the join-

ing of Ti-6Al-4V. This includes using a tabular format [7,13,14,24,32,47,55] (showing flow stress values at different strains,
strain rates and temperatures) or equation based models [7,48,58,153], such as the Johnson-Cook model. According to Turner
et al. [144], each approach has its own advantages. For example, the tabular approach generally appears to be much more
robust and reliable - assuming the FEA code does not have to extrapolate too much outside the region where the data is
available. However, this approach is less computationally efficient. In the authors’ opinion, extra care should be taken when
using equation based models as they do not always accurately represent the true flow stress behaviour over the regime of
interest [16]. In addition, some of the models exclude or give poor representation of the fundamental behaviour. For exam-
ple, the Johnson-Cook model gives poor flow stress estimates at low strain rates and the flow strength linearly reduces to
zero with temperature, which rarely occurs in practice; and the Zener-Hollomon model excludes the strain effects [136].

5.2.5. Validation
A model’s accuracy is highly dependent on the material properties, boundary conditions and assumptions used. The most

important fact to remember is that a model is just an approximation of a real-life engineering problem. Agreeing with Reilly
[136] and Turner et al. [7], models must be critically compared to experiments to test their validity. Successful validation for
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a range of outputs allows for the data predicted by the models that are non-amenable to experimental measurement to be
trusted. In addition, without validation the results may be unreliable to form a basis for further investigation. To date, the
following experimental responses – for a range of materials not just Ti-6Al-4V – have been used to validate LFW process
models: burn-off histories [7,13,14,46,52,55,76,93,95,153,161], flash morphologies [7,13,46], thermal histories
[7,14,15,32,46,153,162], residual stresses [47,93], shear forces [13,14,32], and the average microstructural grain radius
and spatial distribution [96], as shown Fig. 29. Fig. 29 also shows that LFW process models frequently capture experimental
trends, confirming that modelling does provide an insight into the process.

6. Conclusions

This section presents a summary of the article findings, practical implications of the findings and recommendations for
further research. This section should allow the reader to appreciate the benefits and have a better understanding of the LFW
process for the joining Ti-6Al-4V, hopefully allowing for further process development and exploitation.

6.1. Summary

A review of the published literature on the linear friction welding of Ti-6Al-4V was conducted. The key findings from the
review are summarised below:

� Linear friction welding utilise the heat generated during friction to produce solid-state bonds. When compared to other
friction welding processes, where there are numerous publications, relatively little investigation has taken place into the
LFW process. Although, there have been an increasing amount of LFW publications in the last five years.

� The LFW process works by oscillating one workpiece relative to another while under a large, compressive force. Although
one continuous process, LFW occurs over four phases: initial, transition, equilibrium, and deceleration and forging. The
process is controlled by eight inputs, but the oscillation amplitude, oscillation frequency, applied force (pressure) and
burn-off are believed to be the most influential.

� LFW is an established technology for the manufacture of titanium alloy integrated bladed disks (blisks) for aero-engines.
However, due to the many benefits the process offers it is finding increasing interest for the manufacture of aircraft struc-
tural components – particularly for Ti-6Al-4V.

� Components machined from a solid block (ingots, forgings and extrusions) are expensive due to the proportionally large
amount of material that is purchased compared to the amount that remains after machining. LFW reduces the material
required to make a component by joining smaller workpieces to produce a preform, which is subsequently machined to
the desired dimensions. This brings substantial improvements to the buy-to-fly ratios, which significantly reduces man-
ufacturing costs. The linear friction welded components also have a comparable strength and quality to machined parts.

� In addition to the economic benefits, LFW offers many advantages over traditional fusion welding methods, including:
excellent mechanical properties; avoidance of melting, allowing for a range of dissimilar materials to be joined; and very
low defect rates.

� LFW machines are capable of delivering the dimensional precision, with high repeatability, required by the aerospace
industry.

� Much of the academic research into the LFW process is for welds with a single-surface of contact. There is an interest from
industry to investigate the LFW process for non-planar surfaces, such as the ‘‘keystone” geometry.

� Ti-6Al-4V linear friction welds are similar in appearance in that they have several distinct zones: a weld centre zone
(WCZ), a thermo-mechanically affected zone (TMAZ) and a heat affected zone (HAZ), and are surrounded by the expelled
interface material (flash). The extent and microstructural composition of these zones are highly dependent on the pro-
cessing conditions used.

� The thermal profiles generated in the welds are very dependent on the processing conditions used. In general, an increase
of the rubbing velocity (amplitude and/or frequency) increases the interface temperature while reducing the extent of the
HAZ. An increase of the applied pressure decreases the extent of the HAZ and the interface temperature. A decrease of the
in-plane width also reduces the extent of the HAZ and the interface temperature.

� The WCZ consists of a strong transverse texture regardless of the weld size. However, the TMAZ in larger welds exhibit an
alternating bands of transverse {1 1 �2 2} h1 1 �2 3i textures, while small size welds do not. The WCZ texture appears to be
stronger with lower pressures. Moreover, the weld textures are minimally affected by PWHT.

� The tensile, microhardness, torsion and impact properties of Ti-6Al-4V welds tend to be superior in the WCZ due to the
refined microstructure. In general, the fatigue performance (as-welded and PWHT) of the WCZ also appears to be supe-
rior, although there is published literature to the contrary.

� The flash morphology of a Ti-6Al-4V linear friction weld is dependent on the processing conditions used. The ripple mor-
phology is more noticeable when the ratio between the PAZ and the oscillation amplitude is below 1.



Fig. 30. An illustration of the (a) best approach and (b) worst approach to minimise the burn-off to expel the interface contaminants from the weld line into
the flash for Ti-6Al-4V linear friction welds [16].
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� The primary reason for a Ti-6Al-4V linear friction weld being defective is due to the inclusions of contaminants, such as
oxides, in the WCZ. Contaminant removal appears to be critically dependent on the processing conditions used. Larger
applied pressures and smaller in-plane widths reduce the burn-off required to expel the contaminants into the flash.
Interestingly, the rubbing velocity has been shown to have relatively little effect on the contaminant expulsion.

� Ti-6Al-4V linear friction welds contain residual stresses, which are primarily formed during the post-oscillatory motion
cooling stage. The residual stresses can be reduced by appropriate selection of process inputs and post-weld heat
treatments.

� Many of the existing methods for calculating the power input make significant assumptions, like assuming the co-
efficient of friction and the rubbing velocity are constant. A better way of assessing the power input and energy usage
involves using the force and displacement history data from a LFW machine.

� The energy required to produce a weld is reduced with higher rubbing velocities and applied forces. This is due to these
conditions reducing the overall duration of the weld and hence the energy wasted due to conduction, convection and
radiation.

� There has been relatively little investigation into the clamping effects on welds. From the little data available the clamp-
ing arrangement can have a noticeable effect on the weld responses.

� Due to the rapid nature of the LFW process and the fact that the interface of the workpieces cannot be observed during
welding means that using physical experiments alone may fail to provide adequate insight into the process fundamentals.
Computational modelling offers a pragmatic method to understand what is happening throughout the rapidly evolving
process. FEA Modelling provides an insight into many responses that are difficult to obtain experimentally, e.g. the inter-
face contaminant removal, thermal fields and material flow. Experimental validation of models is important to ensure the
accuracy of the results. Successful validation for a range of outputs allows the data predicted by the models that are non-
amenable to experimental measurement to be trusted.

6.2. Practical implications

Based on this review, there may be a benefit to using larger pressures and oscillating the workpieces along the shorter of
the two interface-contact dimensions when producing Ti-6Al-4V welds, as shown in Fig. 30. This is because the burn-off
required to remove the interface contaminants is reduced. Hence for the same burn-off, the factor of safety on contaminant
removal is greater. Furthermore, these conditions can also reduce the interface temperature and refine the weld microstruc-
ture, which may offer additional benefits, such as reduced residual stresses [34,47,130] and improved mechanical properties
[58,119,120].

6.3. Recommendations for further research

Despite the recent advances in understanding of Ti-6Al-4V linear friction welding, there are still many more knowledge
gaps that need addressing to aid further process understanding and industrial implementation.
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Some recommended areas for further research are:

� Microstructure Modelling: Models could be used to investigate the impact of the processing conditions on the
microstructure evolution. This would allow for the effects of the processing conditions on the allotropic phase, average
grain size, grain microstructure and grain spatial distribution to be characterised for Ti-6Al-4V welds. The modelling
approach implemented by Grujicic et al. [96,103] for a Carpenter Custom 465 precipitation-hardened martensitic stain-
less steel would be a good method to achieve this task. The results from this potential study could help to add some con-
clusive arguments to the processing condition effects on the microstructure of Ti-6Al-4V linear friction welds. Modelling
could also help to identify the reasons for the different texture formations.

� LFWMachine Effects: The effects of the LFWmachine on the welds could be investigated. This could help to answer some
fundamental questions. For example, what is the most efficient way to apply the applied pressure, should it be ramped up
to the maximum value quickly or slowly? Is a sinusoidal wave the best method to apply the oscillatory motion or are
there better alternatives? What effect does the workpiece clamping have on the flash formation and interface contami-
nant expulsion? Answers to these questions would help to optimise the process.

� Geometric Effects: In addition to joining workpieces with a single welded surface, as has occurred for most LFW inves-
tigations, further research could address the joining of non-planar surfaces, such as ‘‘keystone” workpieces. The investi-
gations could identify the best way to join these parts and to determine if the microstructure and properties are equal
across all of the welded surfaces. Further research into joining coupons to plate could also be performed to optimise
the weld contaminant removal, microstructure and properties.

� Residual Stress Investigation: Experiments and models could be used to investigate the impact of the processing con-
ditions, such as the workpiece geometry, rubbing velocity and forging pressure, on the formation and magnitude of resid-
ual stresses in linear friction welds. The effectiveness of post-weld heat-treatment on the reduction of the residual
stresses could also be considered. Moreover, research on steel workpieces showed that the heat in the flash refluxes back
into the weld interface during the post-oscillatory cooling [153]. Further research could consider how this phenomenon
affects the residual stresses in Ti-6Al-4V welds.

� Extension to other materials: Although the focus of this article is on Ti-6Al-4V, there is still a need to understand the
effects of the LFW process on the joining of other high-value materials, such as aluminium alloys, aluminium-lithium
alloys and nickel-based superalloys. A buy-to-fly ratio reduction for components made of these materials would poten-
tially yield significant cost savings to manufacturers.
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